CUARENTA AÑOS DE EXPERIENCIA SILICIO EN LA AGRICULTURA

 

EXPERIENCIAS CON SILICIO








Dr.C. Leónides Castellanos González,I Dr.C. Renato de Mello Prado,II M.Cs. Cid Naudi Silva CamposII

ICentro de Estudios para la Transformación Agraria Sostenible (CETAS). Universidad de Cienfuegos. Carretera a Rodas km 4, Cuatro Caminos CP 59430, Cuba.
IIUniversidad Estaudal Paulista, Campus Jaboticabal. SP, Brasil.

RESUMEN

El silicio (Si), después del oxígeno, es el segundo elemento más abundante en la corteza terrestre y considerado no esencial para las plantas superiores. Su absorción puede ocasionar efectos benéficos para algunos cultivos, como la resistencia a plagas. El objetivo del trabajo fue realizar una revisión actualizada de los resultados de investigación relacionados con la resistencia que confiere el silicio a algunos cultivos contra los insectos plagas. Desde hace más de 40 años se están informando los efectos benéficos del Si en la resistencia de los cultivos a los insectos plagas, sin embargo, la información es aún pobre en muchos cultivos y grupos de insectos. Aunque los resultados más alentadores se concentraron en un inicio en el arroz, la caña de azúcar, el maíz y otras gramíneas, se informan también en solanáceas, cucurbitáceas, crucíferas, forestales y el cafeto, siendo más exitosos sobre las especies de insectos que se ubican principalmente en los órdenes Lepidóptera, Hemíptera y Thysanóptera. Entre las fuentes de silicio más empleadas para el manejo de insectos plagas se encuentran la escoria de silicato de calcio y el silicato de potasio.

INTRODUCCIÓN

La nutrición mineral de las plantas ha sido uno de los factores más estudiados con relación a la susceptibilidad y resistencia de las plantas a plagas. De modo general, elevados tenores de nitrógeno y bajas concentraciones de potasio aumentan la susceptibilidad de las plantas a los agentes nocivos (1). La resistencia de las plantas a las plagas puede ser disminuida o aumentada por el efecto de la nutrición mineral sobre las estructuras anatómicas como, por ejemplo, células epidérmicas y cutículas más finas, pared celular con menor grado de salificación, suberización y lignificación. Además de esto, la nutrición puede afectar las propiedades bioquímicas como la reducción de compuestos fenólicos que actúan como inhibidores del desarrollo de plagas o la acumulación de compuestos orgánicos de bajo peso molecular (glucosa, sacarosa y aminoácidos) resultado de la mayor actividad de enzimas descomponedores como amilasa, celulasa, proteasa y carbohidrasa que se presenta comúnmente con la deficiencia de K (2). Una planta bien nutrida posee varias ventajas en cuanto a su resistencia a las plagas con relación a una planta con deficiencia nutricional, y dentro de los elementos minerales, el silicio es considerado un elemento benéfico para las plantas pues contribuye a la reducción de la intensidad del ataque del agente nocivo en varios cultivos (3).

El silicio (Si), después del oxígeno, es el segundo elemento más abundante en la tierra, constituyendo aproximadamente el 28 % de la corteza terrestre (4). Es encontrado solamente en formas combinadas, como la sílice y minerales siliconados. Los silicatos son minerales en los cuales el silicio esta combinado con oxígeno u otros elementos como Al, Mg, Ca, Na, Fe, K y otros, en más del 95 % de las rocas terrestres, los meteoritos, las aguas y en la atmósfera (5). Los minerales siliconados más comunes son el cuarzo, los feldespatos alcalinos y las plagioclasas (6).

El Si se encuentra presente en la solución del suelo como ácido monosilícico (Si(OH)4), la mayor parte en forma no disociada, la cual esta fácilmente disponible para las plantas. Debido a la de silicatización causada por el intenso intemperismo y la lixiviación de los suelos tropicales, las formas de Si más encontradas en estos suelos son cuarzo, ópalo (SiO2 NH2O) y otras formas no disponibles para las plantas. Las formas de Si químicamente activas en el suelo están representadas por el ácido monosilícico soluble y francamente adsorbido, ácido polisilícico, y compuestos organo-silícicos (7).

Los efectos benéficos del silicio han sido demostrados en varias especies de plantas y, en el caso de problemas fitosanitarios, es capaz de aumentar la resistencia de las plantas al ataque de insectos y patógenos (8). El silicio puede conferir resistencia a las plantas por su deposición, formando una barrera mecánica (9), y por su acción como inductor del proceso de resistencia (10).

 EL SILICIO EN LA PLANTA

El silicio no es considerado esencial para los vegetales superiores porque no responde a los criterios directos e indirectos de la esencialidad (3). A pesar de eso, su absorción puede ocasionar efectos benéficos para algunos cultivos como son resistencia a plagas, tolerancia a la toxicidad por metales pesados, al estrés hídrico y salino, menor evapotranspiración, promoción del crecimiento y nodulación en leguminosas, efecto en la actividad de las enzimas y en la composición mineral, mejoría de la arquitectura de las plantas, reducción del encamado de las plantas y por consiguiente aumento de la tasa fotosintética (8, 11).

Las plantas absorben Si como ácido silícico y evaluaciones sobre la base de materia seca indican concentraciones del elemento entre 0,1-10 % en cultivos como el arroz y la caña de azúcar (8). En general las gramíneas son consideradas plantas acumuladoras de este elemento; sin embargo, algunas dicotiledóneas también parecen demostrar esa característica (8).

Los suelos contienen cantidades significativas de Si, aunque el uso de sistemas de cultivo continuo, algunas formas no disponibles y suelos en desequilibrio biológico, hacen necesario su suministro. La caña de azúcar, por ejemplo, puede extraer hasta 380 kg ha-1 año-1 del suelo (12). Los niveles de Si en los tejidos de cada especie de planta varían en relación con la disponibilidad de Si en el suelo (13)

La mayoría de las especies absorben Si por difusión pasiva, de modo que el Si llega al xilema y alcanza la parte aérea, acompañando al flujo de transpiración. Por otra parte, especies de las familias PoaceaeEquisetaceae y Cyperaceae, que presentan alta acumulación de Si (>4 % de Si en peso seco), absorben Si de forma activa (14). En este caso, el Si es absorbido a través de proteínas específicas de membranas, lo que garantiza la acumulación de Si por la planta, independientemente del gradiente de concentración (15).

El Si absorbido por las raíces es transportado a la parte aérea y depositado intra o extracelularmente en los tejidos vegetales como sílice amorfa hidratada (SiO2 NH2O). En las gramíneas, como maíz, arroz y sorgo, la sílice es depositada en la forma de cuerpos silicosos, principalmente, en las células epidérmicas y en las estomas y tricomas foliares (14).

En muchas especies puede ser encontrada debajo de la cutícula una densa capa formada por la deposición de sílice. Una formación de esa capa ha sido fundamental en condiciones de estrés abiótico, por ejemplo, contribuyendo a reducir la pérdida de agua por transpiración y aumentar su eficiencia (16) y en el estrés biótico, sirviendo como una barrera mecánica a la penetración de patógenos y herbívoros masticadores (8, 12).

En las gramíneas el Si se acumula en cantidades mayores que cualquier otro elemento inorgánico. Excepto en ciertas algas, diatomeas y equisetáceas (Equisetum bogotense Kunth, cola de caballo), el Si no es considerado un nutriente. Como resultado de esto, el Si es omitido en la formulación de soluciones de cultivo de uso rutinario y en la fertilización convencional.

Sin embargo, las evidencias muestran que las estructuras de las plantas que crecen en ausencia de Si frecuentemente son más débiles, siendo más susceptibles al estrés abiótico y biótico, como toxicidad por metales, fácilmente invadidas por insectos fitófagos y mamíferos herbívoros (8).

El Si cumple una importante función en la integridad estructural de las células vegetales, contribuyendo a las propiedades mecánicas, incluyendo rigidez y elasticidad (17). El Si está presente en las plantas, principalmente como gel de sílice, en las paredes celulares y como ácido monosilícico en la savia del xilema. El rol de Si en las paredes celulares parece ser análogo a la lignina como un elemento de resistencia y mayor rigidez para la sustitución del agua entre las microfibrillas y otros componentes de carbohidratos en las paredes de las células no lignificadasa.

El Si constituye entre el 0,1 y el 10 % del peso seco de las plantas superiores. En comparación, el Ca está presente en valores que van de 0,1 a 0,6 % y el S de 0,1 a 1,5 %. El arroz acumula hasta 10 % de Si y, en general, las monocotiledóneas acumulan más Si que las dicotiledóneas, aunque las diferencias pueden darse incluso a nivel de variedad (3, 8). No obstante, los análisis realizados indican que la concentración de Si está más influenciada por la posición filogenética (género, especie) que, por factores ambientales, tales como disponibilidad de agua y del mismo Si o la temperatura.

 PAPEL DEL SILICIO EN LA RESISTENCIA DE LAS PLAGAS AGRÍCOLAS

En el caso de incrementar la resistencia al ataque de insectos, el papel del Si ha sido atribuido en parte a su acumulación y polimerización en las paredes celulares, lo cual constituye una barrera mecánica contra el ataque; sin embargo, se ha demostrado que el tratamiento de las plantas con Si trae como consecuencia cambios bioquímicos, como la acumulación de compuestos fenólicos, lignina y fitoalexinas (11). En plantas tales como la calabaza (Cucurbita sp.), la avena (Avena sativa L.) y el sorgo (Sorghum bicolor L. Moench) se ha observado que la aplicación de Si trae como consecuencia un aumento en la síntesis de las enzimas peroxidasa, polifenoloxidasa, glucanasa y quitinasa; las cuales están relacionadas con un incremento en la producción de quinonas que tienen propiedades antibióticas, favorecen la mayor lignificación de los tejidos, la disminución en la calidad nutricional y la digestibilidad, todo lo cual genera, consecuentemente, un decrecimiento en la preferencia de los insectos por las plantas (18).

Es criterio de Arruda
B, que a pesar de que se ha verificado que en el cultivo del maíz (Zea mays L.) ocurre gran disponibilidad natural del silicio en la mayoría de los suelos, su efecto sobre las plantas y sobre los agentes biológicos que las atacan, no son suficientes para interferir de manera significativa en la incidencia de plagas y en la prevención de sus daños, por lo que se requiere la realización de más investigaciones.

 EFECTOS DEL USO DEL SILICIO EN LA RESISTENCIA A LAS PLAGAS AGRÍCOLAS EN DIFERENTES CULTIVOS

Los trabajos más antiguos del efecto del silicio sobre plagas agrícolas se enfocaron en el cultivo del arroz (Oryza sativa L.). La resistencia de las plantas al perforador del tallo, Chilo supressalis (Walker) (Lepidóptera: Pyralidae), fue positivamente correlacionada con el tenor de silicio, determinado en 20 variedades de arroz. Los autores concluyeron que, en las variedades con alto tenor de silicio, fue encontrada una alta correlación lineal negativa entre la sobrevivencia de las larvas y el porcentaje de silicio encontrado en las plantas (19). Para plagas del arroz como delfácidos, thrips y la mosca de la agalla, una aplicación de silicio contribuyó a la reducción de las poblaciones de estos insectos (20, 21).

El efecto de diferentes fuentes de silicio sobre Stenchaetothrips biformis (Bagnall.) (Thysanóptera: Thripidae) en arroz, fue estudiado por diferentes autores (20) donde concluyeron que en los tratamientos en que fue adicionado silicio el número de thrips por hoja fue significativamente menor en relación al tratamiento sin silicio.

En un estudio en que se evaluó la incidencia de las ninfas de Sogatella furcifera (Horváth) (Hemíptera: Delphacidae) en plántulas de arroz cultivadas en concentraciones de Si (0 a 150 ppm de SiO2) se obtuvo una disminución en el número de ninfas del último instar y aumentó el número de individuos machos en la población en estudio (22).

Para la especie Chilo supremain (Walker) (supressalis), plaga del cultivo del arroz; estudios realizados verificaron que la aplicación de 500 kg ha-1 de silicato de potasio proporcionó la reducción de más de la mitad del número de larvas m-2 (23).

Respuestas semejantes fueron observadas por otros autores (24) para Scirpophaga incertulas (Walker), que presentó, con la adición de 2 kg m-2 de cantero de cáscara de arroz carbonizada (rica en silicio), un aumento significativo del tenor del elemento en plantas de arroz con disminución de los daños de la plaga.

En el cultivo del trigo (Tritucum sativum Lam.) se informa la disminución de las poblaciones de áfidos Metopolophium dirhodum (Walker) y Sitobion avenae (Fabr.) (Hemiptera: Aphididae) después de la aplicación foliar de silicio (1 % Na2SiO2), no sólo como resultado de la deposición de silicio en las células epidérmicas, sino también debido a la mayor solubilidad del mismo dentro de la hoja
C.

Con seis tratamientos de silicato de sodio (0,4 % de Na2SiO2) aplicados a intervalos de cinco días a una dosis de 50 mL por maceta, se logró disminuir la longevidad y preferencia de las ninfas del pulgón verde Schizaphis graminum (Rond.) (Hemíptera: Aphididae), por lo que se consideró que el Si confiere resistencia a las plantas de este cultivo contra el insecto (25).

Otros autores encontraron que la fertilización de silicio induce resistencia en las plantas de trigo contra S. graminum, ya que este elemento produce el aumento de la síntesis de compuestos de defensa de la planta de trigo como la peroxidasa, la polifenol oxidasa y fenilalanina amonio liasa, la reducción de la tasa de crecimiento y también la preferencia de este insecto plaga en plantas tratadas con este mineral (18). En otra investigación se verificó que las plantas de trigo tratadas con silicio (ácido silícico 1 %) fueron resistentes al pulgón verde S. graminum (26).

En un estudio para observar el efecto indirecto del silicio sobre el desarrollo de dos importantes enemigos naturales del pulgón verde, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) y Aphidius colemani Viereck (Hymenoptera: Aphidiidae) en plantas de trigo, se demostró que ni el depredador, ni el parasitoide experimentaron cambios en su biología, cuando se alimentan de pulgones que habitan en plantas tratadas con silicio (27).

No se ha comprobado que el uso de silicio en la agricultura pueda alterar la comunicación entre las plantas y los enemigos naturales. Dada la importancia de la integración de los métodos de control de plagas, el estudio de los cambios en las relaciones tróficas implicadas, es fundamental para entender la efectividad del control biológico de los pulgones en las plantas tratadas con silicio (28).

En un estudio fueron tratadas seis variedades comerciales de caña de azúcar (Saccharum spp.) con dos niveles de silicato de calcio (5 000 y 10 000 kg ha-1). Después de la infestación artificial con Eldana saccharina Walker (Lepidóptera: Pyralidae) el peso de las larvas de bórer se redujo en un 19,8 % y la longitud en un 24,4 %. Las variables evaluadas para el tratamiento de Si a 5 000 kg ha-1 quedaron intermedias en relación al tratamiento a la dosis más alta y el control. La interacción entre la variedad y el tratamiento de Si no fue significativa cuando se examinaron individualmente las variedades.

Las variedades susceptibles se podrían beneficiar más del tratamiento con silicio que las resistentes, ya que estas últimas no mostraron un efecto significativo a la aplicación del elemento (29).

En caña de azúcar se asevera que los ataques de plagas podrían reducirse con el uso de cultivares con mayor capacidad de acumulación de silicio, como en el caso del taladrador E. saccharina, en Sudáfrica (30).


Por otra parte no se pudo establecer una relación entre la absorción de Si y la incidencia del bórer de la caña de azúcar (Diatrarea saccharalis F.) en una investigación realizada en condiciones de campo en Brasil (31), lo que se atribuyó a que la incidencia de la plaga en el testigo y los tratamientos fue baja (menor del 4 %), mientras que resultados más recientes verificaron que una mayor absorción de Si en la parte aérea de la caña de azúcar estaba asociada con una menor incidencia del bórer en las variedades más susceptibles (32).

Otro de los cultivos donde más se ha estudiado el efecto del silicio sobre las plagas ha sido el maíz (Zea mays L.) (9), donde se ha encontrado que 48 horas después del suministro de hojas de maíz tratadas con silicio y sin tratar, no existieron diferencias en la mortalidad de larvas de Spodoptera frugiperda Smith, aunque se consideró que aún era pronto para inferir el verdadero efecto del silicio sobre los estados inmaduros del mismo.

Además, se informó que no se observó efecto de silicio (silicato de sodio) sobre la duración de la etapa de larvas y pupas, ni el peso y la mortalidad de las pupas. No obstante, se incrementó la mortalidad y el canibalismo en grupos de larvas que fueron alimentadas con hojas tratadas con Si. Se observó que las mandíbulas de las larvas del sexto instar, mostraron desgaste marcado en la región de los incisivos cuando entraban en contacto con hojas de alto contenido de silicio (9).


Con el objetivo de evaluar el efecto del Si (aplicado al suelo y vía foliar) en interacción con el regulador del crecimiento de insectos lufenurón en el manejo de S. frugiperda en el maíz, fueron realizados ensayos en condiciones de laboratorio e invernadero.

En el laboratorio se evaluó la preferencia de las orugas en hojas desprendidas de las plantas de maíz bajo diferentes tratamientos, así como el consumo y la mortalidad de esta plaga. En invernadero se evaluó la intensidad de las lesiones causadas por las orugas en las hojas, así como el número y la biomasa de las orugas vivas. Los tratamientos no afectaron la preferencia de las orugas en la prueba de libre detección. La interacción de silicio y lufenurón en el manejo de S. frugiperda fue positiva en relación a la aplicación del insecticida solo, lo que se atribuyó a la resistencia mecánica conferida a la hoja por las láminas de silicio depositadas en estas (33, 34).

El efecto del Si se ha evaluado además como táctica para el manejo del pulgón del maíz (Rhopalosiphum maidis Fitch) (Hemíptera: Aphididae). Los tratamientos consistieron en la aplicación de silicio en el suelo (silicato de sodio al 8 %), una aplicación foliar (0,5 % de SiO2), dos aplicaciones foliares, combinación de aplicación al suelo y foliar y un testigo sin tratamiento. Se verificó que en los tratamientos en que se realizó una aplicacion al suelo y otra foliar (0,5 % SiO2), o dos aplicaciones foliares, presentaron el menor número de pulgones, aumentando la resistencia de las hojas y obstaculizando la alimentación de estos insectos (35).

Otros trabajos realizados. en sorgo (Sorghum bicolor L. Moench) (36) evaluaron el efecto de silicio como un inductor de la resistencia al pulgón verde, Schizaphis graminum (Rond) (Homóptera: Aphididae), obteniendo como resultado, la reducción de la preferencia y de la reproducción del pulgón verde, constatado por otros autores que informaron resultados satisfactorios con el empleo del silicio para conferir resistencia a este cultivo frente a S. graminum (37).

La resistencia de 19 genotipos de pastos al ataque del gorgojo de los pastos, Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae) fue estudiada por otro autor (38), quien confirmó que el número de puestas por plantas se correlacionó negativamente con la densidad de los depósitos de silicio en la superficie inferior de las vainas, lo que también dificultó la alimentación de las larvas.



Otro trabajo más reciente evaluó el efecto de diferentes dosis de silicato de calcio sobre la población de ninfas de la chinche castaña de las raíces Scaptocoris carvalhoi Becker en Brachiaria brizantha (Hochst), concluyendo que la aplicación de 2,6 t ha-1 de silicato de calcio fue la mejor dosis estimada para la reducción de ninfas de este insecto (39).


Varios trabajos aparecen en la literatura relacionados con el silicio y la resistencia a las plagas en papa (Solanum tuberosum L.) y otras solanáceas. Para el áfido Myzus persicae (Sulzer), importante plaga de la papa por ser un vector de virus, además de causar daño directo por la cantidad de savia extraída, se realizó un estudio para comprobar el efecto de silicio (ácido silícico al 1 %) como inductor de resistencia a este insecto. La aplicación de silicio no afectó a la preferencia de los áfidos; sin embargo, disminuyó la fertilidad y la tasa de crecimiento de la población de insectos. El porcentaje de lignina aumentó en las hojas de las plantas a las que se le añadió Si al suelo o foliar, mientras que el porcentaje de taninos aumentó solo en las plantas que recibieron el Si por ambas vías (40).


En otro estudio conducido para evaluar el efecto del silicio e imidacloprid sobre la colonización de las plantas de papa por M. persicae se verificó que el Si redujo la colonización por el insecto y el uso de la mitad de la dosis recomendada de imidacloprid (126 g ha-1).

También fue eficaz en la prevención de la colonización, por lo que la adición del silicato puede ser recomendada como otra estrategia en el manejo integrado de plagas de la papa (41).

Resultados en el cultivo de la papa informan que la incidencia del crisomélido Diabrotica speciosa (Coleoptera: Chrysomelidae) y los áfidos (Hemíptera: Aphididae) no fue influenciada por la aplicación foliar semanal de silicio (ácido silícico 0,5 %) (42).

La mortalidad y el número de lesiones de las ninfas de Thrips palmi Karny en las hojas de plantas de berenjena (Solanum melongena L.), fueron evaluadas después de 3, 6, 9 y 12 aplicaciones foliares de silicato de calcio, el cual disminuyó tanto la población de T. palmi como los daños producidos por las ninfas, mostrando un posible aumento de la resistencia de las plantas de berenjena a esa plaga (43).

En un trabajo que tuvo como objetivo evaluar el uso de diferentes fuentes y niveles de silicio en plantas de tomate sobre aspectos biológicos y ovoposición preferencial del minador de la hoja del tomate (Tuta absoluta) (Meyrick) (Lepidóptera: Gelechiidae), se evidenció que los insectos emergidos de los huevos en los tratamientos basados en la aplicación foliar de silicio mostraron un aumento en la duración de las etapas de larva y pupa, disminución de la supervivencia de las larvas y pupas, del peso de las pupas (macho y hembra) y en la preferencia de ovoposición, no ocurriendo así con las aplicaciones realizadas al suelo (44).

En estudios más recientes, soluciones de Si a 100, 300 y 500 mg L-1 procedente de silicato de potasio (KL2SiO3) fueron aplicadas a plantas de pimiento (Capsicum annum L.) a través de aspersión foliar y en solución saturada al suelo, para evaluar los efectos en poblaciones del thrips del chile (Scirtothrips dorsalis Hood). Los análisis de los tejidos mostraron que a través de la solución saturada al suelo, las plantas fueron capaces de absorber Si en la raíces hasta cerca de 2,5 % (p:p), pero esta no fue trasladada a los tejidos de las hojas o al tallo en una tasa equivalente. La aplicación foliar de Si presentó cerca de 0,5 % (p:p) del elemento en los tejidos de las hojas. Se concluyó que las plantas de pimiento tratadas con soluciones de silicato de potasio no acumulan suficiente nivel de Si en los tejidos para protegerlas contra la alimentación y la reproducción de los thrips (45), ya que los niveles son muy bajos en referencia a lo informado para plantas acumuladoras (14).

Se ha trabajado en la comprobación de la influencia de silicato de calcio y el activador acibenzolar-S-metilo en la inducción de la resistencia al desarrollo de Bemisia tabaci biotipo B (Gennadius) (Hemíptera: Aleyrodidae) en el pepino (Cucumis sativus L.). Se observaron efectos adversos de silicato de calcio y del activador acibenzolar-S-metilo en la población de mosca blanca mediante la reducción de la ovoposición, aumento del ciclo biológico y la mortalidad de las ninfas, recomendando estos como productos para ser utilizados en el manejo integrado de la mosca blanca en este cultivo (46).

Investigaciones realizadas con el objetivo de evaluar el efecto de los inductores de resistencia de dos cultivares de soya (Glycine max L.) a Bemisia tabaci biotipo B se comprobó que la aplicación de silicio provoca un aumento en el contenido de lignina en el cultivar de soya IAC-19 (47). Otros estudios realizados en este cultivo demostraron que la aplicación de silicato de potasio foliar influyó en las variables evaluadas, obteniéndose reducción de las larvas que atacan a la soya (48).

El thrips del plateado, Enneothrips flavens Moulton, se considera una de las principales plagas del maní (Arachis hypogaea L.) en varios países. En un trabajo donde se evaluó el efecto del silicio sobre la población de este insecto fue comprobado que una aplicación de silicio aumenta la protección a las plantas de maní, ya que reduce el número de adultos y ninfas del insecto (49).

La estrategia de tratamiento de Si combinado con lesión mecánica artificial afectó la palatabilidad de la hoja de girasol (Helianthus annuus L.) y el desarrollo de Chlosyne saundersii lacinia Doubleday & Hewitson (Lepidóptera: Nymphalidae), lo cual confierió resistencia a las plantas como consecuencia de la acumulación de Si (50).

 un estudio que tuvo como objetivo evaluar el efecto del silicio sobre el comportamiento de Aphis gossypii Glover en cultivares de algodón Gossypium hirsutum Hutch, se arribó a la conclusión de que la aplicación del elemento no afectaba la preferencia de las variedades, tratadas o no, por A. gossypii (51).

En una investigación realizada para evaluar el uso potencial del silicio como una barrera física que ayudara a reducir el uso de plaguicidas en el manejo integrado de la polilla de las crucíferas Plutella xylostella (L.) se utilizó escoria silicatada (agrosilicio) con un 23 % de Si como fuente del elemento en los tratamientos. Se evidenció un efecto significativo de los tratamientos sobre las variables evaluadas observándose mayor atracción y mortalidad de las larvas en el tratamiento con 12 kg ha-1 de la escoria. El Silicio alteró la anatomía de la mandíbula, causando un desgaste, que pudo haber obstaculizado los hábitos de alimentación del insecto, causando una elevada mortalidad (52).

En los últimos 10 años también se ha estado aplicando Si en los forestales con vistas a conocer si éste confiere resistencia a las plagas de insectos. En un estudio realizado utilizando Agrosilício ®, se evaluó el efecto de la aplicación del elemento sobre el desarrollo biológico de Glycaspis brimblecombei (Moore) (Hemíptera: Psyllidae) en Eucalyptus camaldulensis (Dehn.)D. La aplicación de Si causó una mayor mortalidad de las ninfas del insecto, reduciendo considerablemente su población.

En otro estudio realizado en Pinus taeda L. el cual tuvo como objetivo evaluar el efecto de la aplicación de silicio (ácido silícico) sobre los parámetros biológicos y morfométricos de Cinara atlantica (Wilson) (Hemíptera: Aphididae) se pudo determinar que la aplicación del ácido silícico provocaba la disminución del número de ninfas/hembra con respecto al testigo. En relación a la morfometría, de los quince caracteres evaluados, pudo verificarse que el ancho de la cabeza y el largo total de la antena de C. atlantica, diferían para los ejemplares desarrollados en plantas tratadas con Si con respecto a los mantenidos sobre el testigo (53).

Por lo general, el manejo de plagas en el cafeto (Coffea spp.) se lleva a cabo sólo con el uso de plaguicidas químicos; sin embargo, los productos alternativos provenientes de silicio aparecen como una opción sostenible para la realización de control de plagas en este cultivo. Fueron realizados estudios para evaluar la eficiencia de silicio en el control de las principales plagas, entre ellas el minador (Leucoptera coffeella Gué.) en comparación con los tratamientos químicos (54), pudiéndose comprobar que la aplicación de 4 L ha-1de silicio líquido soluble (Sili-K) redujo los índices de la plaga, no así con la aplicación en forma sólida.

 

CONCLUSIONES

Desde hace más de 40 años se están informando resultados de investigación sobre los efectos benéficos del Si en la resistencia de los cultivos a los insectos plagas; sin embargo, la información es aún pobre en muchos cultivos y grupos de insectos. Aunque los resultados más alentadores se concentraron en un inicio en el arroz, la caña de azúcar, el maíz y otras gramíneas, se informan también en solanáceas, cucurbitáceas, crucíferas, los forestales y el cafeto, siendo más exitosos sobre especies de insectos que se ubican principalmente en los órdenes Lepidóptera, Hemíptera y Thysanóptera. Entre las fuentes de silicio más empleadas para el manejo de insectos plagas se encuentran la escoria de silicato de calcio y el silicato de potasio.

Notas al pie

A Husby, C. The role of Silicon in Plant Susceptibility to Disease. 1998, pp. 1-6.

B Arruda, A. C. Efeito do silício aplicado no solo e em pulverização foliar na incidência da lagarta do cartucho na cultura do milho dissertação apresentada à Faculdade de Ciências Agronômicas da Unesp. Mestre em Agronomia, Campus de Botucatu, Brasil, 2009.

C Hanisch, H. C. Zun einfluss der stickstoffdungung und vorbeugender spritzung von natronwasser glas zu weizenpflanzen auf deren widerstandsfahigkeit gegen getreideblattlause. no. 15, Inst. Kali-Driefe, 1980, pp. 287-296.

D Dal Pogetto, M.; Wilcken, C. F.; Lima, A. C. V. y Christovam, R. S. ‘‘Efeito da aplicação de Agrosilício em mudas de Eucalyptus camaldulensis no desenvolvimento biológico de Glycaspis brimblrcombei (Hemiptera:Psyllidae)’’. En: IV Simpósio Brasileiro sobre Silício na Agricultura, edit. Associação Brasileira de Horticultura, Brasil, 2007, pp. 210-213.

 BIBLIOGRAFÍA

1. Michereff, S. J. ‘‘Desenvolvimento de sistemas de amostragem aplicados ao manejo de doenças de plantas’’. Fitopatologia Brasileira, vol. 31, 2006, pp. 17-18, ISSN 0100-4158.

2. Marschner, H. y Rimmington, G.
‘‘Mineral nutrition of higher plants’’. Plant, Cell & Environment, vol. 11, no. 2, 1988, pp. 147-148, ISSN 1365-3040, DOI 10.1111/j.1365-3040.1988.tb01130.x.

3. Malavolta, E. Manual de nutrição mineral de plantas [en línea]. edit. Editora Agronómica CERES, Sao Paulo, Brasil, 2006, 638 p., ISBN 85-318-0047-1, [Consultado: 27 de noviembre de 2015], Disponible en: <http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=INIA.tidad=1&expresion=mfn=022855>.

4. Hans, W. K.
‘‘The composition of the continental crust’’. Geochimica et Cosmochimica Acta, vol. 59, no. 7, abril de 1995, pp. 1217-1232, ISSN 0016-7037, DOI 10.1016/0016-7037(95)00038-2.

5. Savant, N. K.; Snyder, G. H. y Datnoff, L. E. ‘‘Silicon Management and Sustainable Rice Production’’ [en línea]. En: ed. Sparks D. L., Advances in Agronomy, edit. Academic Press, 1996, pp. 151-199, [Consultado: 20 de noviembre de 2015], Disponible en: <http://www.sciencedirect.com/science/article/pii/S0065211308602552> .

6. Exley, C. ‘‘Silicon in life?: A bioinorganic solution to bioorganic essentiality1’’. Journal of Inorganic Biochemistry, vol. 69, no. 3, 15 de febrero de 1998, pp. 139-144, ISSN 0162-0134, DOI 10.1016/S0162-0134(97)10010-1.

7. Matichenkov, V. V. y Calvert, D. V.
‘‘Silicon as a beneficial element for sugar cane’’. Journal American Society of Sugarcane Technologists, vol. 22, no. 2, 2002, pp. 21–30, ISSN 1075-6302.

8. Epstein, E.
‘‘Silicon’’. Annual Review of Plant Physiology and Plant Molecular Biology, vol. 50, no. 1, 1999, pp. 641-664, ISSN 1040-2519, DOI 10.1146/annurev.arplant.50.1.641.

9. Goussain, M. M.; Moraes, J. C.; Carvalho, J. G.; Nogueira, N. L. y Rossi, M. L. ‘‘Efeito da aplicação de silício em plantas de milho no desenvolvimento biológico da lagarta-do-cartucho Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae)’’. Neotropical Entomology, vol. 31, no. 2, junio de 2002, pp. 305-310, ISSN 1519-566X, DOI 10.1590/S1519-566X2002000200019.

10. Fawe, A.; Menzies, J. G.; Chérif, M. y Bélanger, R. R.
‘‘Silicon and disease resistance in dicotyledons’’ [en línea]. En: ed. L.E. Datnoff G. H. S. and G. H. K., Studies in Plant Science, edit. Elsevier, 2001, pp. 159-169, [Consultado: 20 de noviembre de 2015], Disponible en: <http://www.sciencedirect.com/science/article/pii/S0928342001800136> .

11. Patrícia Vieira da Cunha, K.; Williams Araújo do Nascimento, C. y José da Silva, A. ‘‘Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil’’. Journal of Plant Nutrition and Soil Science, vol. 171, no. 6, 1 de diciembre de 2008, pp. 849-853, ISSN 1522-2624, DOI 10.1002/jpln.200800147.

12. Savant, N. K.; Korndörfer, G. H.; Datnoff, L. E. y Snyder, G. H.
‘‘Silicon nutrition and sugarcane production: A review’’. Journal of Plant Nutrition, vol. 22, no. 12, 1 de diciembre de 1999, pp. 1853-1903, ISSN 0190-4167, DOI 10.1080/01904169909365761.

13. Datnoff, L. E.
‘‘Effect of Calcium Silicate on Blast and Brown Spot Intensities and Yields of Rice’’. Plant Disease, vol. 75, no. 7, 1991, p. 729, ISSN 0191-2917, DOI 10.1094/PD-75-0729.

14. Currie, H. A. y Perry, C. C.
‘‘Silica in Plants: Biological, Biochemical and Chemical Studies’’. Annals of Botany, vol. 100, no. 7, 12 de enero de 2007, pp. 1383-1389, ISSN 0305-7364, 1095-8290, DOI 10.1093/aob/mcm247.

15. de Oliveira, L. A.; Korndörfer, G. H. y Pereira, A. C.
‘‘Acumulação de silício em arroz em diferentes condições de pH da rizosfera’’. Revista Brasileira de Ciência do Solo, vol. 31, no. 4, 2007, pp. 685–690, ISSN 1806-9657.

16. Nwugo, C. C. y Huerta, A. J. ‘‘Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium’’. Plant and Soil, vol. 311, no. 1-2, 14 de junio de 2008, pp. 73-86, ISSN 0032-079X, 1573-5036, DOI 10.1007/s11104-008-9659-4.

17. Taiz, L. y Zieger, E. Fisiología vegetal.
5.a ed., edit. Artmed, 2005, 954 p., ISBN 978-85-363-2795-2.

18. Gomes, F. B.; Moraes, J. C. de; Santos, C. D. dos y Goussain, M. M.
‘‘Resistance induction in wheat plants by silicon and aphids’’. Scientia Agricola, vol. 62, no. 6, diciembre de 2005, pp. 547-551, ISSN 0103-9016, DOI 10.1590/S0103-90162005000600006.

19. Djamin, A. y Pathak, M. D. ‘‘Role of Silica in Resistance to Asiatic Rice Borer, Chilo suppressalis (Walker), in Rice Varieties’’. Journal of Economic Entomology, vol. 60, no. 2, 1967, pp. 347-351, ISSN 0022-0493, 1938-291X, DOI 10.1093/jee/60.2.347.

20. Subramanian, S. y Gopalaswamy, A.
‘‘Effect of silicate materials on rice crop pests [India]’’. International Rice Research Newsletter, vol. 13, no. 3, 1988, p. 32, ISSN 0115-0944.

21. Salim, M. y Saxena, R. C.
‘‘Iron, Silica, and Aluminum Stresses and Varietal Resistance in Rice: Effects on Whitebacked Planthopper’’. Crop Science, vol. 32, no. 1, 1992, p. 212, ISSN 0011-183X, DOI 10.2135/ci1992.0011183X003200010044x.

22. Hong, S. K. y Heinrichs, E., A.
‘‘Effects of silica level on whitebacked planthopper’’. International Rice Research Newsletter, vol. 7, no. 4, 1982, p. 17, ISSN 0115-0944.

23. Tayabi, K. y Azizi, P.
‘‘Influence of silica on rice yield and stem-borer (Chilo supremain) in Rasht/Iran 1979-1980’’. Pesticides, vol. 18, no. 5, 1984, pp. 20-22.

24. Sawant, A. S.; Patil, V. H. y Savant, N. K.
‘‘Rice hull ash applied to seedbed reduces deadhearts in transplanted rice’’. International Rice Research Newsletter, vol. 19, no. 4, 1994, pp. 20-21, ISSN 0115-0944.

25. Basagli, M. A. B.; Moraes, J. C.; Carvalho, G. A.; Ecole, C. C. y Gonçalves-Gervásio, R. de C. R.
‘‘Effect of sodium silicate application on the resistance of wheat plants to the green-aphids Schizaphis graminum (Rond.) (Hemiptera: Aphididae)’’. Neotropical Entomology, vol. 32, no. 4, diciembre de 2003, pp. 659-663, ISSN 1519-566X, DOI 10.1590/S1519-566X2003000400017.

26. Costa, R. R.; Moraes, J. C. y Costa, R. R. da.
‘‘Interação silício-imidacloprid no comportamento biológico e alimentar de Schizaphis Graminum (Rond.) (Hemiptera: Aphididae) em plantas de trigo’’. Ciência e Agrotecnologia, vol. 33, no. 2, abril de 2009, pp. 455-460, ISSN 1413-7054, DOI 10.1590/S1413-70542009000200014.

27. Moraes, J. C.; Goussain, M. M.; Basagli, M. A. B.; Carvalho, G. A.; Ecole, C. C. y Sampaio, M. V. ‘‘Silicon influence on the tritrophic interaction: wheat plants, the greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae), and its natural enemies, Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Aphidius colemani viereck (Hymenoptera: Aphidiidae)’’. Neotropical Entomology, vol. 33, no. 5, octubre de 2004, pp. 619-624, ISSN 1519-566X, DOI 10.1590/S1519-566X2004000500012.

28. Oliveira, R. S. de; Ferreira, de S. M.; Martins, M. M. L.; Alves, F. A. y Oliveira, de P. C.
‘‘Silício na proteção de plantas contra herbívoros: uma abordagem sobre as interações tritróficas no sistema trigo, pulgões e parasitoide’’. Enciclopédia Biosfera, vol. 8, no. 14, 2012, p. 876, ISSN 1809-0583, 2317-2606.

29. Keeping, M. G. y Meyer, J. H.
‘‘Calcium silicate enhances resistance of sugarcane to the African stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae)’’. Agricultural and Forest Entomology, vol. 4, no. 4, 2002, pp. 265-274, ISSN 1461-9563, DOI 10.1046/j.1461-9563.2002.00150.x.

30. Kvedaras, O. L.; Keeping, M. G.; Goebel, R. y Byrne, M.
‘‘Effects of silicon on the African stalk borer, Eldana saccharina (Lepidoptera: Pyralidae) in sugarcane’’. Proceeding of South African Sugar Technology Association, vol. 79, 2005, pp. 359–362, ISSN 1028-3781.

31. Camargo, M. S. de; Korndörfer, G. H.; Foltran, D. E.; Henrique, C. M. y Rossetto, R. ‘‘Absorção de silício, produtividade e incidência de Diatraea saccharalis em cultivares de cana-de-açúcar’’. Bragantia, vol. 69, no. 4, diciembre de 2010, pp. 937-944, ISSN 0006-8705, DOI 10.1590/S0006-87052010000400020.

32. de Camargo, M. S.; Korndörfer, G. H. y Foltran, D. E.
‘‘Absorção de silício e incidência de broca-do-colmo em duas soqueiras de variedades de cana-de-açúcar= Silicon absorption and stalk borer incidence by sugarcane varieties in two ratoons’’. Bioscience Journal, vol. 30, no. 5, 2014, pp. 1304-1313, ISSN 1981-3163.

33. Neri, D. K. P.; Moraes, J. C. y Gavino, M. A.
‘‘Interação silício com inseticida regulador de crescimento no manejo da lagarta-do-cartucho Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) em milho’’. Ciência e Agrotecnologia, vol. 29, no. 6, diciembre de 2005, pp. 1167-1174, ISSN 1413-7054, DOI 10.1590/S1413-70542005000600010.

34. Neri, D. K. P.; Gomes, F. B.; Moraes, J. C.; Góes, G. B. de y Marrocos, S. de T. P.
‘‘Influência do silício na suscetibilidade de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) ao inseticida lufenuron e no desenvolvimento de plantas de milho’’. Ciência Rural, vol. 39, no. 6, septiembre de 2009, pp. 1633-1638, ISSN 0103-8478, DOI 10.1590/S0103-84782009005000111.

35. Moraes, J. C.; Goussain, M. M.; Carvalho, G. A. y Costa, R. R.
‘‘Não-preferência do pulgão-da-folha Rhopalosiphum maidis (Fitch, 1856) (Hemíptera: Aphididae) para plantas de milho (Zea mays L.) tratadas com silício’’. Ciência e Agrotecnologia, vol. 29, no. 4, agosto de 2005, pp. 761-766, ISSN 1413-7054, DOI 10.1590/S1413-70542005000400007.

36. Carvalho, S. P.; Moraes, J. C. y Carvalho, J. G.
‘‘Efeito do silício na resistência do sorgo (Sorghum bicolor) ao pulgão-verde Schizaphis graminum (Rond.) (Homoptera: Aphididae)’’. Anais da Sociedade Entomológica do Brasil, vol. 28, no. 3, septiembre de 1999, pp. 505-510, ISSN 0301-8059, DOI 10.1590/S0301-80591999000300017.

37. Moraes, J. C. y Carvalho, S. P.
‘‘Indução de resistência em plantas de sorgo Sorghum bicolor (l.) Moench. ao pulgão-verde Schizaphis graminum (Rond., 1852) (Hemiptera: Aphididae) com a aplicação de silício’’. Ciência e Agrotecnologia, vol. 26, no. 6, 2002, pp. 1185-1189, ISSN 1413-7054.

38. Barker, G. M. ‘‘Grass Host Preferences of Listronotus bonariensis (Coleoptera: Curculionidae)’’. Journal of Economic Entomology, vol. 82, no. 6, 1 de diciembre de 1989, pp. 1807-1816, ISSN 0022-0493, 1938-291X, DOI 10.1093/jee/82.6.1807.

39. Souza, E. A. de; Moraes, J. C. de; Amaral, J. L. do; Liberato, R. D.; Bonelli, E. A. y Lima, L. R.
‘‘Efeito da aplicação de silicato de cálcio em Brachiaria rizantha cv. Marandu sobre a população de ninfas do percevejo castanho das raízes Scaptocoris carvalhoi Becker, 1967, características químicas do solo, planta e produção de matéria seca’’. Ciência e Agrotecnologia, vol. 33, no. 6, diciembre de 2009, pp. 1518-1526, ISSN 1413-7054.

40. Gomes, F. B.; Moraes, J. C.; Santos, C. D. dos y Antunes, C. S.
‘‘Uso de silício como indutor de resistência em batata a Myzus persicae (Sulzer) (Hemiptera: Aphididae)’’. Neotropical Entomology, vol. 37, no. 2, abril de 2008, pp. 185-190, ISSN 1519-566X, DOI 10.1590/S1519-566X2008000200013.

41. Gomes, F. B.; Moraes, J. C. y Assis, G. A.
‘‘Silício e imidacloprid na colonização de plantas por Myzus persicae e no desenvolvimento vegetativo de batata inglesa’’. Ciência Rural, vol. 38, no. 5, agosto de 2008, pp. 1209-1213, ISSN 0103-8478, DOI 10.1590/S0103-84782008000500001.

42. Silva, V. F. da; Moraes, J. C. y Melo, B. A. ‘‘Influence of silicon on the development, productivity and infestation by insect pests in potato crops’’. Ciência e Agrotecnologia, vol. 34, no. 6, diciembre de 2010, pp. 1465-1469, ISSN 1413-7054, DOI 10.1590/S1413-70542010000600016.

43. Dia, de A. G.; Pratissoli, D.; Cola, Z. J.; Bernardo, V.; Mathias, H. A. y Serrão, J. E.
‘‘Silicato de calcio y fertilizante organomineral influencian la fitofagia de Thrips palmi (Thysanoptera: thripidae) en plantas de berenjena (Solanum melongena L)’’. Interciencia, vol. 33, no. 11, noviembre de 2008, pp. 835-838, ISSN 0378-1844.

44. dos Santos, M. C.; Junqueira, A. M. R.; de Sá, V. G. M.; Cola, J.; Zanúncio, M. A. B. y Serrão, J. E.
‘‘Efeito do silício em aspectos comportamentais e na história de vida de Tuta absoluta (Meyrick) (Lepidóptera: Gelechiidae)’’. Revista Brasileira de Agropecuária Sustentável, vol. 2, no. 1, 2012, pp. 76–88, ISSN 2317-5818, 2236-9724.

45. Dogramaci, M.; Arthurs, S. P.; Chen, J. y Osborne, L.
‘‘Silicon Applications have Minimal Effects on Scirtothrips dorsalis (Thysanoptera: Thripidae) Populations on Pepper Plant, Capsicum annum L.’’. Florida Entomologist, vol. 96, no. 1, 2013, pp. 48-54, ISSN 0015-4040, DOI 10.1653/024.096.0106.

46. Correa, R. S. B.; Moraes, J. C.; Auad, A. M. y Carvalho, G. A.
‘‘Silicon and acibenzolar-S-methyl as resistance inducers in cucumber, against the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B’’. Neotropical Entomology, vol. 34, no. 3, junio de 2005, pp. 429-433, ISSN 1519-566X, DOI 10.1590/S1519-566X2005000300011.

47. Moraes, J. C.; Ferreira, R. S. y Costa, R. R.
‘‘Indutores de resistência à mosca-branca Bemisia tabaci Biótipo B (GENN., 1889) (Hemiptera: Aleyrodidae) em soja’’. Ciência e Agrotecnologia, vol. 33, no. 5, octubre de 2009, pp. 1260-1264, ISSN 1413-7054, DOI 10.1590/S1413-70542009000500009.

48. Zelin, E.; Bussolaro, I. y Mourão, S. A. P. M.
‘‘Aplicação de silício no controle de lagartas e prod utividade da cultura da soja’’. Cultivando o Saber, vol. 4, no. 1, 2011, pp. 171-180, ISSN 2175-2214.

49. Dalastra, C.; Campos, A. R.; Fernandes, F. M.; Martins, G. L. M. y Campos, Z. R.
‘‘Silício como indutor de resistência no controle do tripes do prateamento Enneothrips flavens Moulton, 1941 (Thysanoptera: Thripidae) e seus reflexos na produtividade do amendoinzeiro’’. Ciência e Agrotecnologia, vol. 35, no. 3, junio de 2011, pp. 531-538, ISSN 1413-7054, DOI 10.1590/S1413-70542011000300014.

50. Assis, F. A.; Moraes, J. C.; Auad, A. M. y Coelho, M. ‘‘The effects of foliar spray application of silicon on plant damage levels and components of larval biology of the pest butterfly Chlosyne lacinia saundersii (Nymphalidae)’’. International Journal of Pest Management, vol. 59, no. 2, 2013, pp. 128-134, ISSN 0967-0874, DOI 10.1080/09670874.2013.779049.

51. Alcantra, E.; Moraes, J. C. y Antonio, A. ‘‘Efeito de indutores da resistência e cultivares de algodão no comportamento de Aphis gossypii’’. Revista Ciência Agronômica, vol. 41, no. 4, diciembre de 2010, pp. 619-624, ISSN 1806-6690, DOI 10.1590/S1806-66902010000400015.

52. Freitas, L. M. de; Junqueira, A. M. R. y Filho, M. M.
‘‘Potencial de uso do silício no manejo integrado da traça-dascrucíferas, Plutella xylostella, em plantas de repolho’’. Revista Caatinga, vol. 25, no. 1, 2011, pp. 8-13, ISSN 1983-2125.

53. Camargo, J. M. M.; Moraes, J. C.; Oliveira, E. B. de; Penteado, S. do R. C. y Carvalho, R. C. Z. de.
‘‘Efeito da aplicação do silício em plantas de Pinus taeda L., sobre a biologia e morfologia de Cinara atlantica (Wilson) (Hemiptera: Aphididae)’’. Ciência e Agrotecnologia, vol. 32, no. 6, diciembre de 2008, pp. 1767-1774, ISSN 1413-7054, DOI 10.1590/S1413-70542008000600014.

54. Fernandes, A. L. T.; Merrighi, A. L. N.; Silva, G. A. y Fraga, J. E. F. F.
‘‘Utilização do silício no controle de pragas e doenças do cafeeiro irrigado’’. FAZU em Revista, no. 6, 2010, pp. 45-52, ISSN 2236-0328.

 


Las raíces, salud del suelo y ecosistema.

 

Las raíces, salud del suelo y ecosistema.

Poco se sabía del rol efectivo de las raíces en el proceso de generación de materia orgánica, el material vegetal que proviene de la parte aérea, de las raíces y de la rizodeposición, (exudados que liberan las raíces) según fuentes Argentinas debidamente documentadas indican que : la rizodeposición aporta hasta un 46% de la materia orgánica asociada a la parte mineral del suelo, que es la más estable; mientras que las raíces y la parte aérea aportan a esa fracción sólo 9% y 7%, respectivamente.

“¿Qué es la rizodeposición?”.

Si queremos generar materia orgánica en el suelo, de alguna manera debemos contar con plantas que produzcan mucha rizodeposición. Ese es un rasgo que hay que empezar a medir en las plantas. Claramente, la meta es que haya más raíces activas rizodeponiendo al sueloLas plantas, además de darle de comer a los microorganismos están contribuyendo a formar materia orgánica estable del suelo, esa que se ‘pega’ a las arcillas y a los limos. Antes se pensaba que la materia orgánica del suelo se formaba a partir de pedazos de raíces o de tejidos vegetales de difícil descomposición y que una parte importante de esa materia orgánica era el humus, una molécula muy compleja. Ahora se sabe que, en realidad, esta materia orgánica estable se forma principalmente a partir de los compuestos sencillos”.

Mejoramiento vegetal ecosistémico

El hecho de que el mejoramiento vegetal busque cosechar cada vez más, implica también, un problema. “Reminiscencia de la revolución verde… lograr más rindes — fundamental para alimentar al planeta—“; pero olvidamos otros roles de los vegetales para que el ecosistema funcione, “-como producir más raíces que exuden y generen materia orgánica”-. Normalmente, si una planta con poca raíz produce mucho grano, la seleccionamos. Si no puede tomar agua, la regamos. Si el suelo se vuelve infértil, lo fertilizamos.

El fitomejoramiento se debe replantear con un enfoque ecosistemico. No solo se debe buscar producir más órganos cosechables, también debemos mirar características como la producción de raíces y la rizodeposición, o la fijación de N, la atracción a depredadores y polinizadores. Atributos de las plantas importantes para que los agroecosistemas sean más sustentables.

Mejorar el estado de los suelos aumentando su contenido de materia orgánica permite capturar en ellos más CO2 y así contribuir a mitigar los efectos del cambio climático. 

REFERENCIAS.

Sociedad EKO Limitada (ekoltda.blogspot.com), ROL DE LAS RAICES EN LA SALUD DEL SUELO Y ECOSISTEMA.

Sociedad EKO Limitada (ekoltda.blogspot.com)EL SILICIO EN SUELOS ACIDOS.

SILICIO PARA LA NUTRICOIÓN Y PROTECCIÓN VEGETAL.

Sociedad EKO Limitada (ekoltda.blogspot.com) EL SILICIO COMO ELEMENTO BENÉFICO EN AVENA FORRAJERA (Avena sativa L.): RESPUESTA FISIOLÓGICA DE CRECIMIENTO Y MANEJO


ANNGRO UN ADYUVANTE / PENETRANTE

 



UN ADYUVANTE / PENETRANTE
AnnGro™ fue desarrollado y patentado por científicos de la Universidad del Noroeste de Sudáfrica como una microemulsión que actúa como localizador transo potenciador de absorción para transportar moléculas sobre las membranas vegetales.
AnnGro™ contiene ciertos ácidos grasos que actúan como esponjas suspendidas en agua que absorberán las moléculas en sí mismas después de su mezcla, consiste en unas vesículas de transporte único y patentado que encierra los nutrientes y mejoran la absorción de los mismos por las plantas. Su ingrediente activo son Ésteres etílicos de ácidos grasos [25 g/l] provenientes de la Soja.

En la agricultura moderna, junto con los pesticidas y fertilizantes, varios compuestos clasificados como estimulantes del crecimiento de las plantas se vuelven sumamente importantes para la producción de cultivos sostenibles.
Los productos agrícolas en esta categoría incluyen diversos compuestos que se aplican a cultivos o suelos para mejorar el crecimiento, rendimiento y calidad de los cultivos, así como la tolerancia a las tensiones ambientales.

AnnGro™ actúa como una esponja que "empaqueta" el ingrediente activo en sí mismo disfrazando la molécula embalada. Las esponjas AnnGro pueden moverse fácilmente a través de las membranas vegetales. Después de un corto período de tiempo, el tiempo de "embalaje", las moléculas se empaquetan en las esponjas y estas esponjas son capaces de moverse fácilmente a través de las membranas de las plantas y a través de la planta llevando el ingrediente embalado dentro de ella.

Las moléculas que no pueden moverse fácilmente en las plantas ahora pueden hacerlo cuando se empaquetan en las esponjas AnnGro. Esto se debe a que la membrana de la planta no ve la molécula embalada dentro de la esponja, sólo la esponja AnnGro.

AnnGro se utiliza para mejorar la absorción de ComCat. También se utiliza para aumentar la absorción de fertilizantes, y ciertos insecticidas, pesticidas, fungicidas y herbicidas cuando se aplican como un aerosol foliar. También se utiliza para aumentar la absorción de fertilizante líquido por raíces cuando se aplica como un riego localizado. 

INSTRUCCIONES DE USO: UTILICE ÚNICAMENTE COMO SE INDICA
COMPATIBILIDAD:
No use AnnGro® con otros adyuvantes, AnnGro® ha sido probado y se ha comprobado que es compatible con Ca (NO3)2, CuS04, H3BO3, MnSO4, ZnO2ZnSO4, NPK.

INSTRUCCIONES DE MEZCLA:
• Antes de mezclar: Agite bien el recipiente AnnGro® antes de medir el volumen requerido.
Para mezclas con compuestos agrícolas líquidos: Mezcle completamente el compuesto agrícola directamente con el volumen apropiado de AnnGro® en un recipiente adecuado y déjelo reposar durante 60 minutos antes de agregar la mezcla al tanque de aspersión que contiene el volumen apropiado de agua. Agite bien nuevamente antes de rociar.
Para mezclas con compuestos agrícolas en polvo: Mezcle el compuesto en polvo en un recipiente adecuado con la cantidad mínima de agua necesaria para suspender el producto. Agregue la cantidad adecuada de AnnGro® y mezcle bien. 

Deje reposar durante 60 minutos antes de agregar la mezcla al tanque de aspersión que contiene la cantidad de agua mientras se agita continuamente a fondo.
Tasa de dosificación: AnnGro® debe usarse a una tasa de 60 ml / ha siempre que el volumen de pulverización sea de 300 ℓ/ha o menos.

ADVERTENCIAS:
  • Mantener fuera del alcance de los niños, personas desinformadas y animales.
  • Almacene en un lugar fresco y seco lejos de alimentos y piensos.
  • Evite que se congele.
AnnGro® no es un compuesto peligroso, sin embargo, es un portador muy efectivo y, por lo tanto, si el químico con el que se mezcla es tóxico de alguna manera, es probable que AnnGro® mejore la absorción de la toxina. Por lo tanto, es esencial que se sigan los procedimientos de seguridad adecuados y que el equipo de seguridad.

La ropa debe usarse según las instrucciones del fabricante para los compuestos que se van a mezclar con AnnGro®. Aunque este producto ha sido extensamente probado bajo una gran variedad de condiciones, el titular del registro no garantiza que será eficaz bajo todas las condiciones. La acción y el efecto del mismo puede ser afectado por factores como condiciones climáticas anormales, almacenamiento, calidad del agua de dilución, compatibilidad con otras sustancias no indicadas en la etiqueta así como por el método, tiempo y precisión de la aplicación. Además el titular del registro no acepta responsabilidad por daños a cultivos, vegetación, medioambiental o daños al hombre o animal por falta de cuidado.

PRECAUCIONES:
  • Lavar con agua corriente después del contacto accidental con la piel o los ojos.
  • Observe las precauciones de seguridad de cualquier producto que se mezcle con AnnGro®.
  • No coma, beba ni fume mientras manipula este producto o antes de lavarse las manos.
  • Enjuague el recipiente vacío tres veces con un volumen de agua igual al menos a una décima parte del recipiente y agregue los enjuagues al contenido del tanque de aspersión antes de desechar el contenedor de manera responsable, por ejemplo, entrega a un depósito de reciclaje. No reutilice para ningún otro propósito.
  • Una vez embaladas dentro de las esponjas AnnGro, moléculas incluyendo aquellas que normalmente tendrían dificultades para pasar dentro y a lo largo de una planta ahora pueden hacerlo.

SILICIO EN LA PRODUCCIÒN AGRICOLA

 SILICIO EN LA PRODUCCIÒN AGRICOLA

Edgar Guerrero Gutiérrez, Instituto tecnológico Superior de Uruapan, Michoacán, México. 6 de marzo 2007.

El Silicio (Si) juega un papel importante en la planta. Este elemento controla el desarrollo del sistema radicular. La asimilación y distribución de nutrientes minerales, incrementa la resistencia de las plantas al estrés, (hídrico, altas y bajas temperaturas, viento, alta concentración de sales, y metales pesados, hidrocarburos, Aluminio, (Al), etc.) y bióticos, (insectos, hongos, enfermedades).

Los beneficios de la mayor concentración de Si en el suelo y suministrar al suelo minerales ricos en Si a través de procesos de fertilización, proporcionan una solución económica y rentable para la agricultura destacando lo siguiente:

El Silicio aumenta los rendimientos y calidad de la cosecha agrícola. Desde 1848 numerosos reportes de investigaciones, y la producción comercial en campo han demostrado los beneficios al obtener cosechas superiores mediante la fertilización con Sílice, tal como sucedió en la producción de Arroz (15-100%), Maíz (15-35%), Trigo (10-30%), Cebada (10-40%), frutales como palto, mangos, berries (40-70%), caña de azúcar (55-150%) y praderas, leguminosas, hortalizas, forrajes suplementarios.

También se provee beneficios al suelo para la práctica de agricultura sustentable, la nutrición con silicio  al cultivo refuerza en la planta su capacidad de almacenamiento y distribución de carbohidratos requeridos para el crecimiento y producción de cosecha, la autoprotección contra enfermedades causadas por hongos y bacterias, el ataque de insectos y ácaros, además de las condiciones desfavorables del clima, al estimular el desarrollo y actividad de estructuras poliméricas en la cutícula, los tricomas y fotolitos en la superficie de las hojas.

En segundo lugar, el tratamiento del suelo con sustancias con sílice biogeoquimicamente activo optimiza la fertilidad del suelo a través del incremento en la retención y disponibilidad de agua útil, sus propiedades físicas y químicas y de mantener los nutrientes en forma disponible por las plantas.

La sílice restaura la degradación del suelo al incrementar su nivel de fertilidad para la producción agrícola y pascicola.

La falta de ácido mono Silícico y la disminución del silicio amorfo conducen a la destrucción de los complejos órgano mineral, se acelera la degradación de la materia orgánica del suelo y se deteriora la composición mineral. La aplicación de fertilizantes minerales con silicio es una práctica coligada a la agricultura sustentable o sostenible y altamente efectiva en cualquier tipo de suelo.

El Silicio incrementa la resistencia del suelo contra la erosión eólica e hídrica. La aplicación de Si mineral al suelo, mejora y restaura su estructura, incrementa la capacidad de retener agua (30-110%) y la capacidad de intercambio catiónico.

El Si ayuda el desarrollo del sistema radicular de la planta y puede incrementar la masa de raíces, (50-200%), por lo que también estimula el macoyamiento, (mayor número tallos por plantas).

El Silicio incrementa la resistencia a la sequía en plantas. La fertilización con silicio puede optimizar el aprovechamiento de agua de riego, (30-40%) y ampliar los intervalos del riego sin efectos negativos sobre la planta.

Adicionalmente al sistema riego – drenaje, la fertilización con minerales de silicio activo, permiten completar la rehabilitación de suelos afectados por sales, compactación y bajos niveles de pH.

El silicio neutraliza la toxicidad causada por el Aluminio en suelos ácidos mucho mejor que el encalado. Cinco posibles mecanismos para la reducción de la toxicidad por compuestos ricos en silicio; como la formación de ácidos silícicos, orto y meta, coloides, polímeros de silicio y complejos aluminio – silicatos.

El encalado con Calcitas o Dolomitas tiene solamente un mecanismo. Desafortunadamente la aplicación de encalado y dolomita fijan el fosforo y transforman el fosforo disponible en no asimilable para la planta.

Empleando materiales ricos en silicio para la reducción de la toxicidad del aluminio y optimizar el pH, mejora también la nutrición con fosforo, hierro, potasio y zinc; ya que el silicio activa el intercambio de cationes y la movilización de nutrientes.

El silicio aumenta la nutrición del fosforo en las plantas de un 40-60% e incrementa la eficiencia de aplicación.

La fertilización con minerales ricos en silicio promueve la transferencia del fosforo no disponible para las plantas en forma asimilable y previene la transformación de fertilizantes ricos en fosforo en compuestos inmóviles.

Fertilizantes de entrega lenta liberación se pueden fabricar con materiales ricos en sílice.

 

Silicio Seguro - Limpio - Eficaz - Económicamente racional

 

NO ES LO MISMO LA CAL AGRICOLA QUE EL SILICATO



En el segundo decenio del siglo XXI, actual milenio; profesionales y empresas nacionales han documentado sorprendentes resultados en la mitigación de la toxicidad del Aluminio activo en los suelos volcánicos, incremento del CIC y P disponible (Olsen).Experiencia coincidentes con las obtenidas en América central, norte; Europa y Rusia.

De acuerdo a los reglamentos del “SISTEMA DE INCENTIVOS PARA LA RECUPERACIÓN DE LOS DEGRADADOS SUSTENTABLE”  las dosis de mantención para el Calcio van desde 300 – 600 k/há dependiendo del cultivo expresado en producto comercial entre 400 – 800 kg. Los volúmenes para la mitigación del aluminio activo a niveles tolerables por el cultivo ascienden al rango de las 2,5 – 5,5 toneladas métricas. 

Experiencia realizada en un suelo serie Metrenco, Lautaro, IX Región de la Araucanía, Chile; efectuada por EKO Limitada y CEPA S.A. en el transcurso de la primavera de 2018 demostraron, (cuadro siguiente), que la variación de la acidez del suelo determinada, (agua 2,5:1) fue de 0,16 puntos de pH [H+] lo que según metodología descrita por Comité Técnico Regionales SIRSD-S correspondería:


Dosis CaCO3 (kg/ha) =  donde(pH/PT)*1000  donde (0.16/0.15)*1000 = 1087; si consideramos un Valor Agronómico (VA) promedio, del material disponible en el mercado regional, de 76% entonces la variación de pH obtenida con ZumSil equivaldría a 1.430 kg aproximadamente de Carbonato de Calcio comercial.

Ahora bien si calculamos el requerimiento de Cal para deprimir el Aluminio activo [Al+++] en ∆ 14,770%, bajar de 27,620 a 12,850 (Cuadro 1) se requerirán 1.187 kg de Calcita ,(Bernier R, y Alfaro, M., 2006). Metodología de cálculo aceptada de acuerdo Comité Técnico Regionales SIRSD-S [(2.229 – 1.237)/0.76]= 1.187 kg de cal comercial; de donde 2.229 es el CaCOpuro requerido para bajar la Saturación de Aluminio de 28% a 5% y 1.237kg es el  CaCO3 puro requerido para lograr una Saturación de Aluminio de 13%; mientras que 0,75 corresponde al Valor Agronómico (VA) de los productos comerciales utilizados.

Por tanto de acuerdo a los procedimientos descritos en reglamento “SISTEMA DE INCENTIVOS PARA LA RECUPERACIÓN DE LOS DEGRADADOS SUSTENTABLE”  (2019) y (Bernier R., Alfaro, M. 2006) el efecto logrado con la aplicación de ZumSil en dosis de tres litros producen el mismo efecto que una calcita comercial con VA = 76% en las siguientes condiciones:

Variación [H+] solución del suelo ∆ pH  0,16 equivalente a 1.430 kg de calcitas o 3 lt Zumsil. Variación saturación [Al+++] solución del suelo, ∆ [Al+++]  equivalente a 2.229 kg de calcitas o 3 lt de ZumSil.

En la misma experiencia se observó, (Cuadro 2), una variación de fosforo activo ∆4 ppm equivalentes a 159 kg/há producto comercial Súper Fosfato Triple (SFT).

Dosis CaCO3 (kg/ha) =  donde (∆pH/PT)*1000  donde (0.16/0.15)*1000 = 1087; si consideramos un Valor Agronómico (VA) promedio, del material disponible en el mercado regional, de 76% entonces la variación de pH obtenida con ZumSil equivaldría a 1.430 kg aproximadamente de Carbonato de Calcio comercial.

Ahora bien si calculamos el requerimiento de Cal para deprimir el Aluminio activo [Al+++] en ∆ 14,770%, bajar de 27,620 a 12,850 (Cuadro 1) se requerirán 1.187 kg de Calcita Bernier, (R, y Alfaro, M., 2006). Metodología de cálculo aceptada de acuerdo Comité Técnico Regionales SIRSD-S [(2.229 – 1.237)/0.76]= 1.187 kg de cal comercial; de donde 2.229 es el CaCO3 puro requerido para bajar la Saturación de Aluminio de 28% a 5% y 1.237kg es el  CaCO3 puro requerido para lograr una Saturación de Aluminio de 13%; mientras que 0,75 corresponde al Valor Agronómico (VA) de los productos comerciales utilizados.

Por tanto de acuerdo a los procedimientos descritos en reglamento “SISTEMA DE INCENTIVOS PARA LA RECUPERACIÓN DE LOS DEGRADADOS SUSTENTABLE”  (2019) y (Bernier R., Alfaro, M. 2006) el efecto logrado con la aplicación de ZumSil en dosis de tres litros producen el mismo efecto que una calcita comercial con VA = 76% en las siguientes condiciones:

 Variación [H+] solución del suelo ∆ pH  0,16 equivalente a 1.430 kg de calcitas o 3 lt Zumsil. Variación saturación [Al+++] solución del suelo, ∆ [Al+++]  equivalente a 2.229 kg de calcitas o 3 lt de ZumSil.

En cuadro siguiente se presentan la variación de fosforo activo ∆4 ppm, equivalentes a 159 kg/há producto comercial Súper Fosfato Triple (SFT).

Cambios En P Soluble, CICE y SB De Un Suelo Rojo Arcilloso  Serie Metrenco, Colonia Lautaro.

Siguiendo los procedimientos de las fuentes anteriores podemos calcular:

P2O5=∆P*CP*2,29 => P2O5 = [(18-14)*8]*2,29 =73,28 kg; Donde Capacidad tampón (CP) Serie Metrenco = 8 y ∆P= (18-14)=4

Fosforo Total Como P2O5 =73,28  y si consideramos el con tenido en producto comercial 46% de SFT = 73,28/0,46 = 159 kg Súper Fosfato Triple.

Estrategias de Aplicación.

En los registro documentales de diferentes investigadores se puede comparar diferencias significativas en las estrategia de aplicación.



Social y Ambiental Amigable. Para un mismo efecto es más limpio el asperjar una solución acuosa de 200 – 400 litros de ZumSil que 2.000 kg de calcita.  

La contaminación por micro  partículas propias de la deriva cuando se aplican polvos se elimina al asperjar finas gotas.

El personal que participa en la labor de corrección del suelo, no está expuesto a contaminantes en polvos finos, y la fauna residente próxima al cultivo también no está expuesta.


Económico y Rentable. El costo de oportunidad al disponer de un abastecimiento de mejorador de suelos, oportuno en tiempo y forma, disminuye; quedando atrás el desabastecimiento. Un Maxi Saco o Big Bag equivale a tres botellas de ZumSil.

Para la movilización de toneladas de enmiendas de calcita debe el suelo debe tener  suficiente capacidad de soporte para no sufrir daños por compactación o destrucción de su estructura. 

La penetración en el suelo de polvos finos se dificulta cuando no existe precipitación suficiente (agua lluvia); no así la aplicación de una solución liquida.

El ancho de trabajo de los equipos modernos de aspersión es superior al de las espolvoreadora de cal.

La solución de ácido monosilísico, por sus bajos volúmenes, puede ser aplicada con aeronaves tripuladas y no tripuladas.

El tiempo de reacción para una misma profundidad  usando calcitas se logra, con suerte, entre 60 y 90 días; si es incorporada con labranza; hasta un año en cobertera. El ácido monosilísico asperjado en pre siembra no es necesario incorporarlo y su reacción se obtiene a los 18 días post aplicación.

Referencias.

Bernie, V.R, Alfaro, V M.,   W.H., Acidez de los suelos y efecto del encalado.  Boletín INIA N° 151. Osorno Chile, 2006. 45pp.

http://www.sag.cl/ambitos-de-accion/bases-de-los-concursos-regionales-sirsd, Leído el 01de                mayo 2021.

Sadzawka R., A. y L. Porte O. 1985. Aluminio activo y hierro en suelos volcánicos. Agricultura Técnica (Chile) 45(4):329-334.

https://ekoltda.blogspot.com/2021/05/sistemas-de-incentivos-para-la.html

https://pdtilautaro.blogspot.com/2021/04/zumsil-un-silicato-amigo-limpio-eficaz.html

https://agrosilicatos.blogspot.com/2021/05/acido-monosilisico-zumsil.html

https://agrosilicatos.blogspot.com/2021/03/experiencia-con-silicatos-en-la.html

https://agrosilicatos.blogspot.com/2021/04/experiencia-en-polonia-de-la-aplicacion.html

https://www.engormix.com/agricultura/articulos/respuesta-suelo-typic-palehumult-t38911.htm

 


Remediación de suelos